Interesting Conformational and Substitutional Disorder in the Crystal Structures of Three Homologous Crowns

ZS. BÖCSKEI,^{a†} K. SIMON,^a V. NÉMETH,^b B. ÁGAI^b AND L. TŐKE^b

^aDepartment of Chemical Research, CHINOIN Research Centre, Budapest, PO Box 110, H-1325, Hungary, and ^bDepartment of Organic Chemical Technology, Technical University, PO Box 91, H-1521, Budapest, Hungary

(Received 3 March 1994; accepted 19 June 1995)

Abstract

The structures of three members of a homologous diphenylamine-containing crowns, family of 2chloro-6,7,9,10-tetrahydro-16H-dibenzo[b,k][1,4,7,10]monoazatrioxacyclododecine (NAI), 2-chloro-6,7,9,10,-12,13-hexahydro-19H-dibenzo[b,n][1,4,7,10,13]monoazatetraoxacyclopentadecine (NAII), 2-chloro-6,7,9,10,12,13,15,16-octahydro-22H-dibenzo[b,q][1,4,-7,10,13,16]monoazapentaoxacyclooctadecine] (NAIII), are reported, compared and trends are established. The largest crown (an 18-crown-6-type) presents an ability to form a molecular compound with water molecules spontaneously. The propeller-like conformational behaviour of the two phenyl rings leads to the presence of two chiral conformers in the unit cell of the crystals. Additionally, due to the conformationally non-equivalent role of the two phenyl rings, the chlorine substitution leads to two further species, resulting in four different conformers in each crystal structure. The presence of so many species in one crystal generates an interesting type of disorder in two of the three cases.

1. Introduction

The synthesis and characterization of the type (I) compounds [with X = S, N(CH₂)_mH, m = 0, 1, 2, 3, 4 and n =1, 2, 3, 4, $R_1 = Cl$, H and $R_2 = Cl$, H (Németh, 1993)] were initiated, since they share certain structural features with widely used central nervous system (CNS) drugs, such as chlorpromazine. The introduction of the crownether character was expected to increase the selectivity of the drug candidate as far as the given therapeutic field is related to ion transport.

† Alternative address: Laboratory of Theoretical Chemistry, Eötvös University Budapest, PO Box 32, H-1518, Hungary.

As a first step of the wider structural characterization of the family, we now present the X-ray structure and conformational analysis of three closely related compounds with n = 1, 2, 3, X = NH, $R_1 = 2$ -Cl and $R_2 = H$.

2. Experimental

Crystals were obtained by dissolving the compounds in heptane followed by slow evaporation of the solvent. NAI gave, however, only very poor quality crystals. This is the reason for the data for that compound also being of poor quality. The final difference electron-density map of this structure contains one fairly high peak (1.079 e Å⁻³; all the remaining peaks are less than half this height). From its position it is likely to be due to an unresolved disorder caused by a chlorine with very low occupancy.

All structures were solved by the *TEXSAN* package (Molecular Structure Corporation, 1989), but for the final refinement we used *SHELXL*93 (Sheldrick, 1993) so that we could restrain crystallographically independent molecules to having closely similar bond lengths and angles. Although the crystal structures of both NAII and NAIII can be solved and refined to a reasonably low *R* value in space group $P2_1/c$, the true space groups should be $P2_1$ and Pc, respectively, since in the former 61 out of the 378 collected h0l reflections with odd *l* are present, while in the latter 3 out of the 8 measured 0k0 reflections have very significant intensities. Therefore, we refined the NAII and NAIII structures in the lower symmetry space group using relatively strong restraints to keep bond lengths and angles of the pseudo-inversion

Table 1. Experimental details

	NAI	NAII	NAIII
Crystal data			
Chemical formula	C ₁₆ H ₁₆ ClNO ₃	C ₁₈ H ₂₀ CINO ₄	$C_{20}H_{24}CINO_5.H_2O$
Chemical formula weight	305.75	349.80	411.87
Cell setting	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/a$	P_{2_1}	Pc
a (Å)	13.922 (6)	11.146 (4)	12.4// (3)
b (A)	6.951 (3)	12.343 (2)	12.040 (4)
c (A)	30.173 (7)	13./3/ (8)	102 747 (12)
β (°)	93.04 (3)	107.92 (3)	102.747(12)
V (A ⁻)	2913.9 (20)	1/ 9 0.5 (15)	A (9)
$Z = (M_{2} - \pi^{-3})$	0 1 202	4	1 324
D_x (Mg m) Rediction type	1.393 Cu Ko	1.272 Cu Ka	
Wavelength (Å)	1 54180	1 54180	1 54180
No. of reflections for cell	25	25	19
2θ range (°)	31.80-54.09	41.12-54.32	45.97-70.57
$\mu (\text{mm}^{-1})$	2.407	2.060	1.946
Temperature (K)	298 (2)	298 (2)	293 (2)
Crystal form	Plate	Plate	Plate
Crystal size (mm)	$0.40 \times 0.20 \times 0.08$	$0.40 \times 0.20 \times 0.15$	$0.40 \times 0.20 \times 0.15$
Crystal colour	Transparent	Transparent	Transparent
Data collection			
Diffractometer	AFC-6S	AFC-6S	AFC-6S
Data collection method	ω –2 θ scans	$\omega - 2\theta$ scans	ω -2 θ scans
Absorption correction	None	Empirical	Empirical
T _{min}	0.855	0.765	0.547
T _{max}	1.000	0.999	1.000
No. of measured reflections	4542	9978	4220
No. of independent reflections	4323	6824	4220
No. of observed reflections	1110	3333	1612
Criterion for observed	$l > 2\sigma(\mathbf{I})$	$l > 2\sigma(\mathbf{I})$	$l > 2\sigma(\mathbf{I})$
reflections	0.0005	0.0021	
R _{int}	0.0985	75.00	75.38
$\theta_{\max}()$	0.00	$13 \rightarrow h \rightarrow 13$	$0 \rightarrow h \rightarrow 15$
Range of <i>n</i> , <i>k</i> , <i>l</i>	$0 \rightarrow n \rightarrow 10$	$-15 \rightarrow k \rightarrow 15$	$0 \rightarrow k \rightarrow 15$
	$0 \rightarrow k \rightarrow \delta$	$-15 \rightarrow k \rightarrow 15$ $-16 \rightarrow l \rightarrow 16$	$-16 \rightarrow l \rightarrow 16$
No. of standard reflections	$\frac{-37}{3} \rightarrow 1 \rightarrow 37$	3	3
Frequency of standard	Every 150	Every 150	Every 150
reflections	2.019 150	2.00,000	ļ
Intensity decay (%)	0.79	0.52	0.48
Refinement			
Refinement on	F^2	F^2	F^2
$R[F > 4\sigma(F)]$	0.0748	0.0670	0.0652
$wR(F^2)$ (all data)	0.1907	0.1749	0.1745
S	1.308	1.049	1.126
No. of reflections used in	4187	6795	4220
refinement			272
No. of parameters used	375	316	3/3 Only II story IV's refined
H-atom treatment	Only H-atom U's refined	Only H-atom U s refined $U^{(2)} = \frac{2}{5} \left(\frac{1}{5} + \frac{1}{5} \right)^2$	$1/(-2(E^2)) + (0.1245P)^2$
Weighting scheme	$w = 1/[\sigma^2(F_0) + (0.1345P)^2]$	$w = 1/[\sigma^{-}(F_{0}) + (0.1345P)$	$w = 1/[\sigma(r_o) + (0.1343F)$
	$+ 0.0000P$, where $P = (r^2 + 2r^2)/2$	$+ 0.0000 r$, where $r = (F^2 + 2F^2)/3$	$(E^2 + 2E^2)/3$
	$(r_{\bar{o}} + 2r_{\bar{c}})/3$	$(r_0 + 2r_c)/3$	$(r_0 + 2r_c)/3$
$(\Delta/\sigma)_{\max}$	0.002	-0.1/2	0.340
$\Delta \rho_{\text{max}} (e A^{-1})$	0.262	0.321	-0.347
$\Delta \rho_{\min}$ (e A)	-0.505 None	-0.245 SHELYI 03 (Sheldrick 1993)	SHFLXL93 (Sheldrick 1993)
Extinction method	None	0.0020 (4)	0.0006 (4)
Extinction coefficient	International Tables for	International Tables for	International Tables for
Source of atomic scattering	Crystallography (1992 Vol	Crystallography (1992 Vol	Crystallography (1992, Vol.
ractors	C, Tables $4.2.6.8$ and $6.1.1.4$)	C, Tables $4.2.6.8$ and $6.1.1.4$)	C, Tables 4.2.6.8 and 6.1.1.4)
Computer programs			
Data collection	MSC/AFC Diffractometer	MSC/AFC Diffractometer	MSC/AFC Diffractometer
Cell refinement	Control MSC/AFC Diffractometer	Control MSC/AFC Diffractometer	MSC/AFC Diffractometer
	Control	Control	Control
Data reduction	TEXSAN: PROCESS (MSC, 1989)	TEXSAN: PROCESS (MSC, 1989)	TEXSAN: PROCESS (MSC, 1989)
Structure solution	SHELXS86 (Sheldrick, 1990)	SHELXS86 (Sheldrick, 1990)	SHELXS86 (Sheldrick, 1990)
Structure refinement	SHELXL93 (Sheldrick, 1993)	SHELXL93 (Sheldrick, 1993)	SHELXL93 (Sheldrick, 1993)
Preparation of material for publication	TEXSAN: FINISH (MSC, 1989) TEXSAN: FINISH (MSC, 1989) TEXSAN: FINISH (MSC, 1989)

Table 2. Fractional atomic coordinates and equivalentisotropic displacement parameters (A^2) for NAI

 $U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters (A^2) for NAII

 $U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	z	U_{eq}		x	у	z	U_{eq}
C11	0.3414 (3)	-0.4028 (5)	1.33051 (12)	0.0761 (12)	C11	-0.0665 (17)	0.641 (3)	0.781 (3)	0.113 (13)
C2	0.2560 (7)	-0.2212 (15)	1.3268 (4)	0.046 (3)	C12	0.0610 (3)	1.1229 (3)	1.0109 (3)	0.130(2)
C3	0.2431 (8)	-0.0979 (15)	1.3619 (3)	0.047 (3)	C2	0.0756 (8)	0.6874 (8)	0.7731 (7)	0.0802 (11)
C4	0.1741 (7)	0.0427 (16)	1.3598 (3)	0.049 (4)	C3	0.1547 (7)	0.7531 (7)	0.8496 (6)	0.0676 (9)
C5	0.1147 (8)	0.0518 (16)	1.3209 (3)	0.048 (3)	C4	0.2665 (7)	0.7908 (6)	0.8384 (5)	0.0552 (8)
C6	0.1286 (8)	-0.0704 (17)	1.2850 (3)	0.053 (4)	C5	0.2991 (7)	0.7644 (6)	0.7526 (6)	0.0578 (8)
C7	0.2008 (8)	-0.2046 (17)	1.2880(3)	0.050 (4)	C6	0.2196 (8)	0.6979 (8)	0.6780 (6)	0.0757 (11)
N8	0.1537 (6)	0.1676 (12)	1.3934 (2)	0.052 (3)	C7	0.1094 (8)	0.6608 (9)	0.6897 (7)	0.0857 (13)
C9	0.2200 (6)	0.2798 (13)	1.4199 (3)	0.044 (3)	N8	0.3557 (6)	0.8509 (5)	0.9147 (5)	0.0659 (8)
C10	0.3196 (6)	0.2665 (16)	1.4175 (3)	0.053 (4)	C9	0.3331 (7)	0.9347 (6)	0.9732 (5)	0.0550 (8)
CII	0.3789 (8)	0.3877 (18)	1.4430 (4)	0.063 (4)	C10	0.2184 (7)	0.9816 (7)	0.9641 (6)	0.0654 (9)
C12	0.3405 (8)	0.5110 (18)	1.4723 (4)	0.067 (4)	C11	0.2078 (6)	1.0670 (8)	1.0275 (8)	0.0833 (12)
C13	0.2430 (8)	0.5267 (17)	1.4762 (3)	0.059 (4)	C12	0.3130 (8)	1.1087 (8)	1.0995 (7)	0.0898 (13)
C14	0.1844 (7)	0.4088 (16)	1.4505 (3)	0.044 (3)	C13	0.4291 (8)	1.0635 (7)	1.1081 (7)	0.0777 (11)
O15	0.0833 (5)	0.4067 (12)	1.4527 (2)	0.057 (2)	C14	0.4408 (6)	0.9792 (6)	1.0466 (6)	0.0592 (9)
C16	0.0353 (8)	0.5844 (18)	1.4427 (3)	0.063 (4)	015	0.5509 (5)	0.9311 (5)	1.0474 (4)	0.0719 (7)
C17	0.0355 (9)	0.6344 (16)	1.3954 (3)	0.060 (4)	C16	0.6651 (7)	0.9897 (9)	1.0912 (7)	0.0835 (13)
O18	-0.0175 (5)	0.4921 (12)	1.3707 (2)	0.055 (2)	C17	0.7616 (8)	0.9422 (10)	1.0517 (7)	0.0906 (13)
C19	-0.0110(8)	0.4990 (16)	1.3240 (3)	0.057 (4)	O18	0.7306 (6)	0.9590 (6)	0.9468 (5)	0.0927 (9)
C20	0.0650 (8)	0.3758 (16)	1.3072 (4)	0.062 (4)	C19	0.8149 (8)	0.9136 (10)	0.9004 (7)	0.102 (2)
O21	0.0386 (5)	0.1795 (11)	1.3172 (2)	0.052 (2)	C20	0.7568 (9)	0.9160 (8)	0.7877 (7)	0.0951 (14)
CI1'	0.4706 (3)	0.2414 (5)	0.99251 (11)	0.0769 (13)	O21	0.6602 (5)	0.8354 (6)	0.7634 (5)	0.0870 (8)
C2′	0.4716 (8)	0.8998 (17)	1.1264 (4)	0.062 (4)	C22	0.5647 (8)	0.8573 (9)	0.6722 (6)	0.0841 (12)
C3′	0.4034 (8)	0.7720 (16)	1.1093 (3)	0.053 (4)	C23	0.4556 (7)	0.7869 (7)	0.6659 (5)	0.0760 (11)
C4′	0.3560 (8)	0.6488 (16)	1.1356 (3)	0.047 (3)	O24	0.4097 (5)	0.8081 (5)	0.7483 (4)	0.0697 (7)
C5'	0.3764 (8)	0.6607 (16)	1.1815 (3)	0.055 (4)	Cl1'	1.0542 (4)	1.3505 (6)	0.7098 (5)	0.096 (2)
C6′	0.4453 (8)	0.7895 (17)	1.1990 (3)	0.056 (4)	C12′	0.9433 (4)	0.8714 (6)	0.4987 (7)	0.171 (4)
C7′	0.4934 (8)	0.9073 (17)	1.1712 (4)	0.068 (4)	C2′	0.9172 (6)	1.3057 (8)	0.7292 (7)	0.0802 (11)
N8'	0.2859 (4)	0.5181 (8)	1.1214 (2)	0.053 (3)	C3′	0.8425 (7)	1.2419 (7)	0.6520 (6)	0.0676 (9)
C9′	0.2944 (4)	0.3813 (8)	1.0870 (2)	0.046 (3)	C4′	0.7306 (7)	1.2012 (6)	0.6606 (5)	0.0552 (8)
C10'	0.3731 (4)	0.3760 (8)	1.0598 (2)	0.045 (3)	C5′	0.6969 (7)	1.2284 (6)	0.7477 (6)	0.0578 (8)
C11'	0.3735 (8)	0.2429 (17)	1.0260 (3)	0.051 (4)	C6′	0.7694 (8)	1.2965 (8)	0.8216 (6)	0.0757 (11)
C12'	0.3017 (9)	0.1120 (18)	1.0196 (3)	0.059 (4)	C7′	0.8826 (8)	1.3342 (9)	0.8110 (7)	0.0857 (13)
C13′	0.2237 (8)	0.1116 (16)	1.0458 (3)	0.054 (4)	N8′	0.6432 (6)	1.1421 (5)	0.5853 (5)	0.0659 (8)
C14′	0.2221 (7)	0.2455 (15)	1.0790 (3)	0.044 (3)	C9′	0.6673 (7)	1.0590 (6)	0.5265 (5)	0.0550 (8)
015'	0.1447 (5)	0.2594 (12)	1.1077 (2)	0.060 (2)	C10'	0.7843 (7)	1.0144 (7)	0.5383 (6)	0.0654 (9)
C16′	0.1297 (8)	0.0922 (18)	1.1340 (3)	0.064 (4)	C11'	0.7960 (6)	0.9281 (7)	0.4768 (8)	0.0833 (12)
C17'	0.2042 (8)	0.0663 (16)	1.1695 (3)	0.060 (4)	C12'	0.6931 (8)	0.8879 (8)	0.4025 (8)	0.0898 (13)
O18'	0.2012 (5)	0.2217 (12)	1.2000 (3)	0.065 (3)	C13'	0.5761 (8)	0.9320 (7)	0.3903 (7)	0.0777 (11)
C19′	0.2818 (7)	0.2378 (16)	1.2306 (3)	0.058 (4)	C14'	0.5614 (6)	1.0161 (6)	0.4504 (6)	0.0592 (9)
C20'	0.3616 (8)	0.3507 (16)	1.2143 (4)	0.060 (4)	O15'	0.4498 (5)	1.0626 (5)	0.4480 (4)	0.0719 (7)
021'	0.3273 (6)	0.5476 (12)	1.2102 (2)	0.062 (3)	C16′	0.3341 (7)	1.0050 (9)	0.4006 (7)	0.0835 (13)
					C17'	0.2359 (8)	1.0551 (10)	0.4375 (7)	0.0906 (13)
					O18'	0.2644 (6)	1.0325 (6)	0.5432 (5)	0.0927 (9)
					C19'	0.1810 (8)	1.0813 (10)	0.5903 (7)	0.102 (2)
					C20'	0 2382 (0)	1 0924 (8)	0 7014 (7)	0.0051 (14)

021'

C22'

C23'

024'

0.3372 (5)

0.4309 (8)

0.5414 (4)

0.5838 (4)

symmetry-related molecules at closely similar values. The occupancies of the Cl atoms at positions 2 or 11 belonging to molecules which occupy one particular site were constrained to add up to one. In order to comply with the requirements for the data collection for non-centrosymmetric structures, following the referee's suggestion, we recollected the data for both NAII and NAIII with the inclusion of Friedel mates. For NAII a full data set was successfully collected. The refinement with the data set containing the Friedel mates converged to the same solution as the half data set concerning both occupancies and Flack x values. However, for NAIII both attempts to collect Friedel mates produced data sets which were inferior in quality to our first data set with no Friedel pairs. Therefore, we decided to use data from the first crystal. Our refinements in the non-centrosymmetric space groups for NAII and NAIII are also authenticated by the close agreement with the F_c values and the large F_o 's for those reflections that would have been

absent if the space group had been truly centrosymmetric $(P2_1/c)$.*

1.1569 (5)

1.1350 (9)

1.2095 (4)

1.1848 (4)

0.7313 (5)

0.8234 (6)

0.8361 (4)

0.7489 (4)

0.0870 (8)

0.0841 (12)

0.0760 (11)

0.0697 (7)

Other experimental details are summarized in Table 1. Final atomic coordinates are given in Tables 2, 3 and 4.

3. Comments

The bond lengths, bond angles and torsion angles provided an opportunity for some general conclusions to

^{*} A list of observed and calculated structure factors has been deposited with the IUCr (Reference: KA0027). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 4. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for NAIII ~ ~

-0.2033(5)

-0.1880(6)

0.8647 (7)

0.8432 (5)

-0.0808(7)

-0.0252(8)

0.0665 (6)

0.4754 (6)

0.5868 (8)

0.6287 (9)

0.5798 (10)

0.5855 (11) 0.5450(7)

0.4303 (6)

0.3571 (7)

0.2491 (7)

0.2001(7)

0.3565 (11)

0.7482 (8)

0.6902 (9)

0.5942 (6)

0.5488 (8)

0.6085 (10)

0.7022 (11)

0.5358 (5)

0.5813(6)

0.6868 (6)

0.7156 (6)

0.6570 (10)

0.5525 (9)

0.5139(7)

0.4090 (5) 0.3316 (7)

0.2231 (6)

0.1794(7)

0.0700 (8)

0.0286 (9)

0.0854 (10)

0.0682 (11)

0.1136 (8)

0.2290(7)

0.3004 (7)

0.4091 (7)

0.4581 (7)

0.3058 (11)

C11

C12 C11

C12'

C2

C3

C4

C5

C6

C7

N8

C9

C10

CII

C12

C13

C14

015

C16

C17

018

C19 C20

021

C22

C23 024

C25

C26

027

O28

C2'

C3'

C4'

Č5'

C6'

C7'

N8'

C9'

C10'

C11'

C12'

C13

C14′

015'

C16' C17'

018'

C19

C20'

021'

C22'

C23

024'

C25'

C26

027

028'

U_{eq}	$= (1/3) \sum_i \sum_j U_{ij} a$	t;*a;*a _i .a _j .		C4N8	1.755(10)
•		. , ,		C5-021	1 382 (10)
-	<i>y</i>	Z	U_{eq}	N8	1.302(10)
5)	0.6359(7)	0.2699 (8)	0.133 (4)	C14-015	1.413 (9)
6)	0.1245 (9)	0.3840 (11)	0.090 (5)	015-016	1 429 (11)
7)	0.1279 (10)	1.2066 (10)	0.114 (5)		
5)	0.3730(7)	1.1042 (8)	0.114 (4)	C3C4N8	126.1 (8)
7)	0.5820 (11)	0.2588 (10)	0.102 (2)	N8—C4—C5	116.9 (9)
8)	0.5096 (11)	0.3321 (8)	0.088 (2)	021 - C5 - C4	120.9 (9)
6) ()	0.4586(7)	0.3173 (5)	0.0732 (14)	C4—N8—C9	127.4 (7)
8)	0.4/80(10)	0.2255 (6)	0.073 (2)	C14C9N8	118.7 (7)
10)	0.5519(11)	0.1586 (8)	0.099 (2)	C9-C14-015	114.5 (8)
10)	0.5996 (12)	0.1737 (9)	0.105 (2)	C14-015-C16	115.9 (8)
5)	0.3872 (6)	0.3902 (5)	0.0738 (12)	N8-C4-C5-O21	-0.7(16)
6)	0.2997 (7)	0.4245 (7)	0.0657 (14)	C5-C4-N8-C9	-135.8 (11)
6)	0.2672 (8)	0.3845 (9)	0.075 (2)	C4-N8-C9-C14	175.6 (10)
5)	0.1761 (9)	0.4248 (11)	0.101 (2)	N8-C9-C14-015	2.4 (14)
9)	0.1149 (9)	0.4960 (11)	0.105 (2)	C9-C14-O15-C16	-120.2(10)
8)	0.1438 (9)	0.5325 (10)	0.093 (2)	C14-015-C16-C17	71.1 (11)
6)	0.2342 (7)	0.4975 (8)	0.0724 (15)		
5)	0.2679 (5)	0.5310 (6)	0.0810 (12)		
6)	0.2006 (8)	0.5991 (8)	0.087 (2)		
7)	0.2523 (9)	0.6235 (6)	0.098 (2)	Table 6. Selecte	ed geome
6)	0.2577 (9)	0.5340 (5)	0.0906 (12)		N
8)	0.2885 (12)	0.5563 (6)	0.105 (2)		1
9)	0.2812 (11)	0.4620 (8)	0.112 (2)	Cl1—C2	1.719 (5)
10)	0.3626 (8)	0.3922 (6)	0.0989 (13)	Cl2—Cl1	1.725 (4)
11)	0.3437 (11)	0.2911 (7)	0.109 (2)	C4—N8	1.414 (8)
7)	0.4376 (10)	0.2305 (7)	0.102 (2)	N8—C9	1.379 (8)
6)	0.4604 (8)	0.2249 (6)	0.0913 (12)	C14-015	1.361 (7)
7)	0.4052 (9)	0.1496 (7)	0.103 (2)	015—C16	1.427 (9)
7)	0.4547 (11)	0.1336 (6)	0.094 (2)	C16—C17	1.468 (10)
7)	0.4312 (8)	0.2199 (6)	0.0835 (11)	C5-C4-N8	116.7 (6)
11)	0.4356 (9)	0.4271 (9)	0.0842 (12)	O24C5C4	115.1 (6)
8)	-0.0687 (11)	1.2270 (10)	0.102 (2)	024C5C6	125.4 (6)
9)	0.0003 (11)	1.1516 (8)	0.088 (2)	C9—N8—C4	127.8 (6)
6)	0.0456 (7)	1.1629 (6)	0.0732 (14)	N8-C9-C14	116.0 (6)
8)	0.0173 (10)	1.2491 (6)	0.073 (2)	O15-C14-C9	113.6 (6)
10)	-0.0482 (12)	1.3212 (8)	0.099 (2)	O15-C16-C17	107.6 (7)
11)	-0.0934 (12)	1.3077 (9)	0.105 (2)	O18-C17-C16	110.3 (8)
5)	0.1151 (6)	1.0888 (5)	0.0738 (12)	Nº CA C5 024	5 4 (11)
6)	0.2040 (7)	1.0545 (7)	0.0657 (14)	$N_0 - C_4 - C_3 - O_24$	-3.4 (11)
6)	0.2354 (8)	1.0898 (9)	0.075 (2)	C_{3} C_{4} N_{8} C_{9} C_{14}	140.5 (8)
6)	0.3263 (10)	1.0480 (10)	0.101 (2)	C4 - N8 - C9 - C14	1/8.5 (8)
10)	0.3898 (10)	0.9811 (11)	0.105 (2)		0.0(11)
9)	0.3564 (9)	0.9421 (10)	0.093 (2)		159.5 (/)
7)	0.2635 (7)	0.9755 (8)	0.0724 (15)		-160.1(8)
5)	0.2275 (5)	0.9422 (6)	0.0810 (12)	015-016-017-018	65.5 (11)
7)	0.2940 (8)	0.8752 (8)	0.087 (2)	10 - 17 - 018 - 019	-1/8.0 (8)
6)	0.2410 (9)	0.8529 (6)	0.098 (2)		
7)	0.2442 (8)	0.9410 (5)	0.0906 (12)		
8)	0.2074 (11)	0.9201 (7)	0.105 (2)		015 1

65.5 (11) C22-C23-O24-C5 171.0 (8) 178.0 (8) trend is the C14-O15 bond of the conformationally most strained molecule (NAI). This bond is quite long [1.413 (9) Å], whereby the strain present in the smallest macrocycle can be somewhat relieved. Other C(aliphatic)—O bond lengths are similar to those found in other crown ethers (Garrell, Smyth, Fronczek & Gandour, 1988). The C-C bonds are also somewhat shorter than those in aliphatic hydrocarbons. As far as the bond angles are concerned it is worth mentioning that the angles around oxygens resemble sp^2 values, while those around C atoms are characteristic of sp^3 , as expected.

In all three crystal structures we detected the presence of four different species. In the case of the smallest crown (NAI) there are two crystallographically independent molecules (Fig. 1) with similar crown conformations differing only in the location of the Cl

be drawn. It is generally valid for the three compounds that the C(aromatic)-O bond lengths are shorter [between 1.339(7) and 1.382(10)Å] than the C-O bond lengths with O atoms not directly connected to any of the aromatic rings [between 1.389(10) and 1.454 (6) Å], which is due to the partial delocalization of the lone pair on the oxygen towards the aromatic ring (see Tables 5, 6 and 7). The only exception from this

0.2130(11)

0.1373 (8)

0.1499 (11)

0.0578 (11)

0.0399 (8)

0.0947 (9)

0.0465 (11)

0.0695 (8)

0.0674 (9)

1.0147 (9)

1.0870 (6)

1.1855 (6)

1.2464 (7)

1.2507 (6)

1.3276 (8)

1.3445 (6)

1.2582(7)

1.0587 (9)

0.112 (2)

0.109(2)

0.102 (2)

0.103 (2)

0.094(2)

0.0835 (11)

0.0842 (12)

0.0913 (12)

0.0989 (13)

EI et al.			197	
Table 5. Selecte	d geometr NA	ic parameters (Å	, °) for	
Cl1C2 C4N8 C5O21 N8C9 Cl4O15 O15C16	1.733 (10) 1.376 (10) 1.382 (10) 1.420 (7) 1.413 (9) 1.429 (11)	C16—C17 C17—O18 O18—C19 C19—C20 C20—O21	1.467 (12) 1.421 (10) 1.418 (10) 1.471 (11) 1.448 (11)	
C3-C4-N8 N8-C4-C5 O21-C5-C4 C4-N8-C9 C14-C9-N8 C9-C14-O15	126.1 (8) 116.9 (9) 120.9 (9) 127.4 (7) 118.7 (7) 114.5 (8)	015C16C17 018C17C16 C19018C17 018C19C20 021C20C19 C5O21C20	112.7 (9) 108.5 (9) 116.1 (8) 114.0 (8) 106.4 (8) 114.9 (8)	
N8-C4-C5-O21 C5-C4-N8-C9 C4-N8-C9-C14 N8-C9-C14-O15 C9-C14-O15-C16 C14-O15-C16-C17	$\begin{array}{c} -0.7 \ (16) \\ -135.8 \ (11) \\ 175.6 \ (10) \\ 2.4 \ (14) \\ -120.2 \ (10) \\ 71.1 \ (11) \end{array}$	015C16C17O18 C16C17O18C19 C17O18C19C20 O18C19C20O21 C4C5O21C20 C19C20O21C5	63.6 (12) -169.5 (9) 93.1 (11) 64.1 (12) 79.2 (13) -155.0 (8)	
Table 6. Selected geometric parameters (Å, °) for NAII				
Cl1—C2 Cl2—Cl1 C4—N8 N8—C9 Cl4—Ol5 Ol5—Cl6 Cl6—Cl7	1.719 (5) 1.725 (4) 1.414 (8) 1.379 (8) 1.361 (7) 1.427 (9) 1.468 (10)	C17018 018C19 C19C20 C20021 O21C22 C22C23 C23024	1.389 (10) 1.404 (10) 1.483 (11) 1.428 (9) 1.398 (9) 1.475 (10) 1.403 (7)	

C17-018-C19

O18--C19--C20

O21-C20-C19

C22-O21-C20

O21-C22-C23

O24-C23-C22

C17-018-C19-C20

018-C19-C20-021

C19-C20-O21-C22

C20--O21--C22--C23

021-C22-C23-024

C4---C5---O24---C23

115.0(7)

109.1 (8)

106.6 (8)

112.7(7)

109.0(7)

110.0 (6)

121.4 (5)

167.5 (9)

-72.6 (11)

154 3 (8)

60.9 (9)

179.1 (6)

-166.2(7)

0.1054 (8) 0.0520(10) -0.0398 (10) 0.1236(5)0.0757 (6) -0.0285(6)-0.0592(5)-0.0042(9)0 1023 (8) 0.1441 (6) 0.2497 (5) 0.3251 (6) 0.4343 (7)

NAIII						
C11-C2	1.7091 (8)	O18-C19	1.411 (8)			
Cl2Cl1	1.7094 (8)	C19-C20	1.475 (9)			
C4—N8	1.405 (6)	C20	1.435 (8)			
C5-027	1.339 (7)	O21—C22	1.395 (7)			
N8-C9	1.384 (6)	C22-C23	1.465 (9)			
C14015	1.364 (6)	C23	1.445 (7)			
O15-C16	1.437 (6)	O24-C25	1.391 (7)			
C16-C17	1.480 (9)	C25-C26	1.458 (9)			
C17018	1.408 (7)	C26027	1.454 (6)			
C9—N8—C4	123.8 (5)	O21-C20-C19	109.6 (6)			
N8	117.4 (5)	C22-O21-C20	114.1 (5)			
O15-C14-C9	115.9 (5)	O21—C22—C23	108.4 (6)			
C14-015-C16	118.3 (4)	O24-C23-C22	114.0 (6)			
O15-C16-C17	108.7 (5)	C25-024-C23	114.9 (5)			
O18-C17-C16	108.9 (5)	O24-C25-C26	109.2 (6)			
C17-018-C19	111.1 (5)	O27C26C25	109.4 (5)			
O18-C19-C20	108.7 (6)	C5-027-C26	119.1 (5)			
N8-C4-C5-027	-5.0 (17)	018-C19-C20-O21	70.0 (13)			
C5-C4-N8-C9	-123.4 (12)	C19-C20-O21-C22	-160.9 (11)			
C4-N8-C9-C10	6.9 (16)	C20	-173.3 (11)			
C10-C9-C14-O15	176.6 (13)	O21—C22—C23—O24	-64.4 (12)			
N8C9C14O15	3.7 (16)	C22-C23-O24-C25	-84.2 (12)			
C9-C14-O15-C16	- 175.3 (11)	C23-024-C25-C26	-164.9 (7)			
C14-015-C16-C17	179.0 (9)	O24-C25-C26-O27	-72.9 (12)			
O15-C16-C17-O18	-66.0 (11)	C4C5O27C26	-174.6 (11)			
C16-C17-O18-C19	-169.4 (10)	C25-C26-O27-C5	173.3 (11)			
C17-018-C19-C20	173.7 (9)					

Table 7. Selected geometric parameters (Å, °) for

atom (attached to either C2 or C11). These two chiral molecules assume chiral shape and a centre of symmetry transforms them into their counterparts. For the two other crowns (NAII and NAIII; Figs 2 and 3) the two chirally unrelated species (differing only in the location of the Cl atom attached to either one or the other phenyl ring) occupy the same position in an alternative manner. We believe that the reason for the crystal structures of NAII and NAIII being somewhat similar but different from NAI could be that the alternative positions occupied by the Cl atom are empty in half the cases. This will result in a decrease in the degree of the close packing. Since NAI has the lowest molecular weight and molecular volume, the unoccupied volume needed for a Cl atom has the largest relative effect on its structure. The packing could become so loose that the given structure is no longer stable. Therefore, the formation of a different structure $(P2_1/a, Z = 8)$ will occur. The relative compactness of the NAI structure is demonstrated well by the enhanced density $(1.393 \text{ Mg m}^{-3})$ compared with that of NAIII $(1.292 \,\mathrm{Mg}\,\mathrm{m}^{-3}).$

For NAII and NAIII an interesting type of disorder leads to formally dichlorinated compounds in the crystal structures. The pseudo-centrosymmetric arrangement of the molecules is fairly well maintained. Essentially it is only the occupancies of the chlorine substituents that break the rule. In NAIII the occupancies of the four species are: Cl: 0.66, Cl2: 0.34, Cl1': 0.42, Cl2': 0.58; for NAII: Cl1: 0.09, Cl2: 0.91, Cl1': 0.44, Cl2': 0.56. In order to further assess the reliability of the disordered structures the Cl \cdots Cl contacts less than 3.4 Å have been calculated. There are no contacts of this type in the

ordered structure of NAI. In NAIII one intermolecular contact of this type exists: $Cl1 \cdots Cl1' (x-1, y+1, z-1)$ 3.27 (2) Å. In NAIII there are two $Cl \cdots Cl$ repulsions: $Cl1 \cdots Cl2 (-x, y-\frac{1}{2}, 2-z)$ 2.85 (4) and $Cl1' \cdots Cl2'$ (2 - x, $y + \frac{1}{2}, 1 - z)$ 2.88 (1) Å, indicating local order in the adjacent layers along the twofold screw axis (Haller, Rae, Heerdegen, Hockless & Welberry, 1995).

Fig. 1. The two independent molecules of NAI in the asymmetric unit.

The two phenyl rings of all three compounds will become distinguishable since the NH group prefers to be coplanar with one of the rings and not with the other. The lone pair on the nitrogen atom will become delocalized towards both of the phenyl rings, resulting in a shortening of the corresponding C—N bonds and a C—N—C bond angle characteristic of sp^2 atoms (see Tables 5, 6 and 7).

The conformational behaviour of propeller-like substituents of a central atom, *i.e.* the isomerization in compounds displaying restricted rotation of aryl groups, has been extensively studied by several groups, both for the general open-chain-type situation (Gust & Mislow, 1973) as well as for the more specific case of the crown ethers (Lockhart, McDonnell & Tyson, 1983; Clegg, Lockhart & McDonnell, 1985).

In this context it seems to be worth analysing the torsion angles along the crowns of the three compounds (Tables 5, 6 and 7). The C—C bonds are all synclinal (Klyne & Prelog, 1960) with relatively small deviations from the expected values of 60 and -60° . In contrast, the C—O bonds are antiperiplanar with substantial (~20°) deviations from 180°, which are possibly due to the absence of H atoms on the oxygens as opposed to carbons. As expected, NAI seems to be the conformationally most strained molecule of the three. The C9—O14—C15—C16 torsion angle (and similarly C9'—O14'—C15'—C16') of NAI is, for example, in an anticlinal conformation [-120(1) and -119.5(9)°, respectively].

Fig. 2. The structure of the molecule NAII.

Table 8. Selected intermolecular contacts (Å) for NAIII

<i>D</i> — H ··· <i>A</i>	H· · · <i>A</i>	D—A	$D - H \cdots A$
N8H8···O28 ⁱ	1.95 (1)	2.90(1)	171.9 (4)
N8'—H8'···O28' ⁱ	1.90(1)	2.87(1)	169.5 (4)
028—H28A···O24 ⁱ	2.07 (2)	3.07(1)	176.6 (4)
028—H28B···O18 ⁱ	1.89(2)	2.90 (2)	174.7 (4)
028′—H28C···O24′ ⁱ	1.98 (2)	2.96(1)	178.3 (5)
O28′—H28D· · ·O18′ ⁱ	2.04 (2)	2.98 (2)	156.5 (4)
Symmetry code: (i) x, y	, Z.		

It is also worth noting that the interplanar angles of the two phenyl rings are similar in all three structures, although the different ring sizes could lead to quite different values [NAIII 57.8 (3) and 57.1 (3)°, NAII 44.1 (3) and 44.9 (2)°, NAI 44.8 (3) and 44.6 (3)° for all molecules].

As is well known (Goldberg, 1984), crown-ethertype molecules tend to form inclusion complexes with a number of ligands. The crystal structure determination revealed a spontaneous formation of such a complex of NAIII with water, the source of which is unknown, although it is likely to be the atmosphere. The affinity of NAIII to water is not surprising if we notice the optimal hydrogen-bonding donor and acceptor abilities of NAIII to water molecules (Fig. 3 and Table 8).

A systematic study of the complex-forming ability of the members of this series will be undertaken in the future.

Fig. 3. The structure of the molecule NAIII.

Thanks are due to Mr M. Hanusz for computational and technical assistance.

References

- Clegg, W., Lockhart, J. C. & McDonnell, M. B. (1985). J. Chem. Soc. Perkin Trans. I, pp. 1019–1023.
- Garrell, R. L., Smyth, J. C., Fronczek, F. R. & Gandour, R. D. (1988). J. Incl. Phenom. 6, 73-78.
- Goldberg, I. (1984). Inclusion Compounds, edited by J. C. L. Atwood et al., pp. 261-332. London: Academic Press.
- Gust, D. & Mislow, K. (1973). J. Am. Chem. Soc. 95, 1535-1547.

- Haller, K. J., Rae, A. D., Heerdegen, A. P., Hockless, D. C. R. & Welberry, T. R. (1995). Acta Cryst. B51, 187-197.
- Klyne, W. & Prelog, V. (1960). Experientia, 16 521-568.
- Lockhart, J. C., McDonnell, M. B. & Tyson, P. D. (1983). J. Chem. Soc., Perkin Trans. 1, pp. 2153-2159.
- Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Németh, V. (1993). PhD thesis. Technical University of Budapest, Hungary.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.